Unified Formulation for a Triaxial Elastoplastic Constitutive Law for Concrete

نویسندگان

  • Rabah Hammoud
  • Rachid Boukhili
  • Ammar Yahia
چکیده

A constitutive model to describe the triaxial load-response spectrum of plain concrete in both tension and shear was developed. The inelastic phenomena are described using the plastic flow with direction determined by the gradient of the plastic potential. A new plastic potential is introduced and experimentally fitted to ensure better estimate of the load direction. This approach allows to control the inelastic dilatancy in terms of the inelastic deformation of the material. By overlaying the plastic potential on modified Etse and Willam's yield surface (both defined on the Haigh-Westergaard coordinates), the results showed that the two curves do not undergo similar stress states for a given strength level. It is, therefore, necessary that each surface goes through the current stress state to ensure adequate evaluation of normal vectors. A closed-form solution to accurately predict the triaxial stress state in concrete has been proposed. The predictive capabilities of the proposed model are evaluated by comparing predicted and measured stresses. The proposed model is shown to be accurate in predicting stress state of concrete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Substructure Model for Concrete Behavior Simulation under Cyclic Multiaxial Loading

This paper proposes a framework for the constitutive model based on the semi-micromechanical aspects of plasticity, including damage progress for simulating behavior of concrete under multiaxial loading. This model is aimed to be used in plastic and fracture analysis of both regular and reinforced concrete structures, for the framework of sample plane crack approach. This model uses multilamina...

متن کامل

A simple and efficient plasticity-fracture constitutive model for confined concrete

A plasticity-fracture constitutive model is presented for prediction of the behavior of confined plain concrete. A three-parameter yield surface is used to define the elastic limit. Volumetric plastic strain is defined as hardening parameter, which together with a nonlinear plastic potential forms a non-associated flow rule. The use of non-associated flow rule improves the prediction of the dil...

متن کامل

Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members

The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement ...

متن کامل

An Elastoplastic Hydro-mechanical Model for Unsaturated Soils

This paper presents a coupled elastoplastic constitutive model for predicting the hydraulic and stress-strain-strength behaviour of unsaturated soils. Hydraulic hysteresis in the water-retention behaviour is modeled as an elastoplastic process with the elastic region of the saturation degree. The effect of change in degree of saturation on the stress-strain-strength behaviour and the effect of ...

متن کامل

A Constitutive Model for Sands

In this paper, an elastoplastic constitutive model is presented for predicting sandy soil behavior under monotonic and cyclic loadings. The model is based on the CJS3 model that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule in deviatoric mechanism is non-associated and a kinematic hardening law controls the evolution of the &#10yield surface. In the present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013